Quantitative relationship between total and preferential sorption coefficients in polymer cosolvent systems

B. Celda, A. Campos, R. Gavara and J. E. Figueruelo*

Departmento Química Física, Facultad de Químicas, Universidad de Valencia, Burjasot, Valencia, Spain (Received 22 July 1985; revised 30 October 1985)

Second virial (A_2) and preferential solvation (λ) coefficients, as well as binary interaction potentials (g_{12}) , as measured by light scattering, for the ternary systems n-dodecane/butanone (MEK)/poly(dimethylsiloxane) (PDMS) and n-hexadecane/MEK/PDMS have been determined at 20.0°C. An inversion of λ and a maximum in coefficient A_2 , at $\phi_{10} \simeq 0.57$ in the n-dodecane/MEK/PDMS system and at $\phi_{10} \simeq 0.40$ in the n-hexadecane/MEK/PDMS system, take place, both systems displaying cosolvent character. The coincidence in solvent composition at which A_2 is maximum and $\lambda = 0$ can, in light of the Flory-Huggins-Pouchlý formalism, be used to predict the total sorption parameter Y from experimental λ values and vice versa. The developed formalism is proven to hold for the above ternary systems as well as for n-nonane/MEK/PDMS, n-decane/MEK/PDMS.

(Keywords: second virial coefficients; preferential solvation coefficients; binary interaction potentials; ternary interaction potentials; cosolvent systems; n-alkane/butanone/poly(dimethylsiloxane) systems)

INTRODUCTION

The Flory-Huggins (FH) formalism, as generalized by Pouchlý¹ to ternary solvent (1)/solvent (2)/ polymer (3) systems, describes sorption equilibrium properties (total, Y, and preferential, λ , solvation coefficients) in terms of binary, g_{ij} , and ternary, g_T , interaction potentials as well as some derivatives with system composition of both kinds of interaction potentials. The complex dependence of the sorption coefficients on the function g_{T} and its derivatives may be simplified by changing the above functions by the approximate concentration-independent a_{q} and a_{r} parameters^{2,3}. Since the evaluation of g_{T} and its derivatives^{4,5}, or of a_g and a_χ in the approximate alternative, demands known values of both Y and λ data, the generalized formalism seems unable not only to predict any sorption equilibrium property but to establish a relationship between both equilibrium properties.

In this paper, the above problem is partially overcome. It is shown in which manner, for those systems with an inversion in λ and without specific interactions, Y values can be predicted from known λ values or vice versa. As test systems, n-alkane (1)/butanone (MEK) (2)/ poly(dimethylsiloxane) (PDMS) (3) ternary systems, with the n-alkane being n-nonane (NON), n-decane (DEC), n-undecane (UND), n-dodecane (DOD) and n-hexadecane (HED), have been chosen. Moreover, following a systematic study on the above systems, carried out in this laboratory, data on A_2 , λ and g_{12} are reported for the DOD/MEK/PDMS and HED/MEK/PDMS systems, which show a similar behaviour to the ones previously reported⁶⁻⁹.

EXPERIMENTAL

Characterization of polymer samples and experimental techniques and conditions have been described elsewhere^{6,7}.

THEORY

A dilute solvent (1)/solvent(2)/polymer (3) solution may be considered as being formed by two phases coexisting in equilibrium: the bulk solvent and the domain of the coil, binary and ternary, respectively. Throughout the text the following nomenclature will be used to define the composition in both phases: ϕ_{i0} (*i*=1,2) is the volume fraction of component *i* in the bulk solvent and it is assumed to be equal to the composition of the solvent mixture prior to polymer solution; ϕ_i (*i*=1,2,3) is the volume fraction of component *i* in the domain of the coil and u_i (*i*=1,2) the volume fraction of the solvent mixture inside the coil, so²

$$u_i = \phi_i / (1 - \phi_3)$$

From a phenomenological point of view, two quantities define the sorption equilibrium in ternary systems, coefficients Y and λ : λ is directly accessible from experiment, whereas Y is not. However Y is related to the experimental quantity A_2 , through

$$Y = (V_1 / \bar{v}_3^2) A_2 / F(x)$$

where \bar{v}_3 is the partial specific volume of polymer, V_i the molar volume of component i (i=1,2) and F(x) a function of the excluded volume. In the following, the

^{*} To whom correspondence should be addressed.

approximation F(x) = 1 is used, as usual¹⁰⁻¹². Also Y is indirectly related, through some excluded-volume theory, to another experimental quantity like $[\eta]$ (intrinsic viscosity)^{3,13}. According to the FH formalism, as generalized by Pouchlý, λ and A_2 are respectively defined by

$$\lambda = -\bar{v_3} \frac{M_{13}}{M_{11}} \tag{1}$$

$$A_2 = \frac{\bar{V}_3^2}{2RT} \left(M_{33} - \gamma \frac{M_{13}^2}{M_{11}} \right)$$
(2)

where $\gamma = 1$ when preferential sorption effects are taken into account, and $\gamma = 0$ when they are not ('single liquid' approach). The M_{ij} , the limits at infinite polymer dilution of the second derivatives of the Gibbs energy of mixing with respect to u_i and u_j , are not simple functions of system composition. They depend on binary, g_{ij}° , and ternary, g_{T}° , interaction parameters at infinite polymer dilution and on some derivatives of both kinds of potentials with system composition^{1,7}.

 M_{13} can be calculated experimentally as a function of ϕ_{10} through equation (1) from $\lambda(\phi_{10})$ and $g_{12}(\phi_{10})$ experimental data, since $M_{11}(\phi_{10})$ can be evaluated unequivocally when $g_{12}(\phi_{10})$ is known. However, the theoretical expression for M_{13} , as given by Pouchlý *et al.*¹, depends on $g_{T}^{\circ}(u_{1})$ and $(\partial g_{T}/\partial u_{1})_{\phi_{3}\to 0}$, which are unknown. To overcome this situation and reproduce λ from only $g_{12}(\phi_{10})$ data, or to look for a correlation between experimental λ data, Pouchlý² assumes that

$$g_{\rm T}^{\circ}(u_1) = a_g g_{12}(\phi_{10}) \tag{3}$$

 a_g being a constant at any composition.

The substitution of equation (3) into the corresponding M_{13} expression^{1,5} allows us to define an approximate M_{13} , M_{13}^{p} , as

$$N_{13}^{p} = \frac{M_{13}^{p}V_{1}}{RT} = (s - 1 + g_{13}^{\circ} - sg_{23}^{\circ}) + (1 - a_{g}) \times \left(g_{12}(\phi_{10} - \phi_{20}) - \frac{\mathrm{d}g_{12}}{\mathrm{d}\phi_{10}}\phi_{10}\phi_{20}\right)$$
(4)

where $s = V_1/V_2$ and the g_{ij}° parameters are related to χ_{ij}° through the Koningsveld and Kleitsjens equation^{14,15}. Rearranging terms in equation (2), after substituting the M_{11} expression⁷ and the above approximate M_{13}^{P} , a linear correlation between λ and g_{12} is obtained. From its intercept and slope, the values of the constants ($g_{13}^{\circ} - sg_{23}^{\circ}$) and $(1 - a_g)$ can respectively be evaluated and, of course, may be used to recalculate λ .

In the case of the global sorption term, M_{33} , the unknown variables are $g_{T}^{\circ}(u_{1})$ and $(\partial g_{T}/\partial \phi_{3})_{u_{1},\phi_{3}\rightarrow 0}$ and $M_{33}(\phi_{10})$ can only be evaluated through equation (2) from experimental $A_{2}(\phi_{10})$ and $g_{12}(\phi_{10})$ data. In a second approach³, looking for correlations between $[\eta]$ data, Pouchlý assumes that

$$\chi_{\rm T}^{\circ}(u_1) = a_{\chi} g_{12}(\phi_{10}) \tag{5}$$

where a_{χ} is a constant at any composition and $\chi^{\circ}_{T}(u_{1})$ is

related to $g_{\rm T}^{\circ}(u_1)$ by

$$\chi_{\mathrm{T}}^{\circ}(u_{1}) = g_{\mathrm{T}}^{\circ}(u_{1}) - \frac{1}{2} \left(\frac{\partial g_{\mathrm{T}}}{\partial \phi_{3}} \right)_{u_{1},\phi_{3} \to 0}$$
(6)

With this assumption, the new global sorption term, namely M_{33}^{p} ,

$$\frac{M_{33}^{P}V_{1}}{RT} = \phi_{10} + s\phi_{20} - 2\chi_{13}^{\circ}\phi_{10} - 2s\chi_{23}^{\circ}\phi_{20} + 2(1 - 2a_{\chi})g_{12}\phi_{10}\phi_{20}$$
(7)

no longer depends on $g_{T}^{\circ}(u_{1})$ nor on $(\partial g_{T}/\partial \phi_{3})_{u_{1},\phi_{3}\to 0}$. Substituting M_{33}^{p} in equation (2), together with M_{13}^{p} and $M_{11}V_{1}/RT = N_{11}$ yields A_{2} as a function of $g_{12}(\phi_{10})$. Rearranging terms in the new defining A_{2} equation, two possible linear correlations can be obtained, namely:

$$Z = \frac{1}{2s\phi_{20}} \left(\frac{A_2 2V_1}{\bar{v}_3^2} + \gamma \frac{(N_{13}^p)^2}{N_{11}} - \phi_{10} - s\phi_{20} + 2s\chi_{13}^\circ\phi_{10} \right)$$
$$= -\chi_{23}^\circ + (1 - 2a_\chi) \frac{g_{12}\phi_{10}}{s} \tag{8}$$

or

$$Z = \frac{1}{2\phi_{10}} \left(\frac{A_2 2V_1}{\bar{v}_3^2} + \gamma \frac{(N_{13}^p)^2}{N_{11}} - \phi_{10} - s\phi_{20} + 2s\chi_{23}^\circ\phi_{20} \right)$$
$$= -\chi_{13}^\circ + (1 - 2a_\chi)g_{12}\phi_{10} \tag{9}$$

From the slope and intercept of equation (8), $(1-2a_{\chi})$ and χ_{23}° may respectively be calculated, whereas from the slope and intercept of equation (9), $(1-2a_{\chi})$ and χ_{13}° can be obtained. In any case, as occurs with $g_{T}^{\circ}(u_{1})$ and $(\partial g_{T}/\partial \phi_{3})_{u_{1},\phi_{3}\to 0}$ evaluation, application of (4) on the one hand or of (8) or (9) on the other, demands experimental λ and A_{2} data^{2,3} over a broad range of solvent mixture composition.

RESULTS AND DISCUSSION

Throughout the text, the ternary systems will be named by reference to the n-alkane. Thus, DOD system will mean n-dodecane/MEK/PDMS ternary system.

Apparent (A_2^*) and real (A_2) second virial coefficients and apparent molecular weights (M_3^*) for PDMS samples with nominal $(M_3 = \overline{M}_w)$ molecular weights 68 000, 80 500, 125 000 and 150 000, at several compositions of the ternary solvent mixtures, are respectively given for DOD and HED systems in *Tables 1* and 2. In the HED system, the polymer sample with the lowest molecular mass was not measured. *Tables 3* and 4 show the variation of the refractive index increments $v_3 = (dn/dc_3)_{u_1}$ and $v_1 = (dn/d\phi_{10})_{c_3=0}$ for the DOD and HED systems respectively. They are necessary for the evaluation of M_3^* , A_2^* and λ (ref. 7).

From a qualitative point of view, the dependences of A_2 and λ on mixture composition, ϕ_{10} , and on \overline{M}_w for both systems, are similar to those previously reported for HEX, HEP, NON, DEC and UND systems⁶⁻⁹. So, A_2 dependence on ϕ_{10} shows a maximum, and the sharper the maximum the lower the molecular weight of the polymer, as commented earlier⁶⁻⁹. Likewise, the λ values

Table 1 Nominal (M_3) and apparent (M_3^*) molecular weights, real (A_2) and apparent (A_2^*) second virial and preferential solvation coefficients (λ) for DOD/MEK/PDMS system at several mixture compositions at 20.0°C

<i>M</i> ₃		M [*] ₃ ^a	$A_{10}^2 \times 10^{4a}$	$A_{2} \times 10^{4}$	1.h
(g	,	(g	(m)	(m)	λ°
mol ')	ϕ_{10}	mol ')	molg ²)	mol g *)	(cm ³ g ⁻¹)
68 000	0.00		0.08	0.08	
	0.10	72 500	0.94	1.00	0.022
	0.20	76 900	1.49	1.69	0.034
	0.30	78 000	2.33	2.68	0.032
	0.40	81 300	2.97	3.55	0.032
	0.50	71 300	3.61	4.31	0.007
	0.55	65 900	4.34	4.32	-0.003
	0.60				-0.017°
	0.70				-0.044°
	0.85	102900	1.66	2.51	-0.044
	0.90	91 900	1.66	2.23	-0.034
	0.95	78 000	1.47	1.69	- 0.019
	1.00		1.37	1.37	
80 500	0.00		0.12		
	0.10	86 600	0.86	0.92	0.025
	0.20	89 100	1.43	1.58	0.028
	0.30	94 300	2.21	2.59	0.037
	0.40	93 100	3.04	3.52	0.026
	0.50	86 000	4.01	4.29	0.008
	0.55	81 300	4.13	4.17	0.001
	0.85	120800	1.58	2.37	-0.043
	0.90	107 100	1.59	2.11	0.033
	0.95	93 300	1.45	1.68	-0.020
	1.00		1.22	1.22	
125 000	0.00		0.09	0.09	
	0.10	131 700	0.82	0.86	0.018
	0.20	139 300	1.32	1.47	0.030
	0.30	144 000	1.92	2.21	0.033
	0.40	144 800	2.52	2.92	0.026
	0.50	139 100	3.11	3.47	0.013
	0.55	122 500	3.46	3.39	-0.002
	0.60				- 0.021°
	0.70				- 0.045°
	0.85	178 200	1.42	2.02	-0.037
	0.90	159 400	1.53	1.95	-0.029
	0.95	140 400	1.21	1.35	-0.026
	1.00		1.16	1.16	
150 000	0.00		0.10	0.10	
	0.10	158 500	0.79	0.83	0.019
	0.20	167 800	1.24	1.39	0.031
	0.30	176 400	1.74	2.05	0.038
	0.40	175 600	2.31	2.71	0.028
	0.50	159 000	2.79	2.96	0.011
	0.55	150000	3.08	3.08	0.000
	0.85	215 600	1.36	1.95	-0.038
	0.90	201 900	1.32	1.78	-0.036
	0.95	174400	1.12	1.30	-0.021
	1.00		1.05	1.05	

"Uncertainties on M_3^* and A_2^* are about 4-5%

^b Mean deviation of λ values is ± 0.007

^c From steric exclusion chromatography measurements⁶

and the range of solvent mixture composition in which λ values are positive (i.e. in which PDMS is preferentially solvated by n-alkane) follow a similar trend to the corresponding ones for the systems previously studied. So, solvation by MEK (λ negative values) is higher than in the other n-alkane systems, as expected⁸.

Both DOD and HED systems seem to obey both Pouchlý's approaches as expressed by equations (3) and (5), as shown in *Figure 1*, as also happened with the remaining studied n-alkane/MEK/PDMS systems⁶⁻⁹ Similarly, the solvent composition at which A_2 attains its maximum value coincides with the λ inversion point ($\lambda = 0$). This fact, in accordance with the thermodynamic theory^{16,17} for cosolvent systems, deserves detailed discussion.

Let us call ϕ_{10}^i the solvent mixture composition at the inversion point. At that composition, $\lambda = 0$, and the preferential sorption term in A_2 , $(M_{13}^2/M_{11}) = 0$; therefore

Table 2 Nominal (M_3) and apparent (M_3^*) molecular weights, real (A_2) and apparent (A_2^*) second virial and preferential solvation coefficients (λ) for HED/MEK/PDMS system at several mixture compositions at 20.0°C

<i>M</i> ₃		M ^{*a}	$A_2^* \times 10^{4 a}$	$A_2 \times 10^4$	<u> </u>
(g		(g	(ml	(ml	λ ^ь
mol^{-1})	ϕ_{10}	$mol^{-1})$	$mol g^{-2}$)	$mol g^{-2}$)	$(cm^3 g^{-1})$
80 500	0.00		0.12	0.12	
	0.10	82 600	1.03	1.06	0.008
	0.20	84 400	1.59	1.67	0.010
	0.24	84 400	1.70	1.78	0.009
	0.30	84 700	2.07	2.18	0.007
	0.35	83 800	2.32	2.42	0.004
	0.40	79 900	2.51	2.49	0.000
	0.55				- 0.039°
	0.68	121 300	0.83	1.25	-0.034
	0.70	118 000	0.55	0.80	-0.034
	0.75	109 250	0.15	0.20	-0.031
	0.80	106 400	0.01	0.01	-0.033
125 000	0.00		0.09	0.09	
	0.10	128 400	0.90	0.92	0.008
	0.20	130800	1.50	1.57	0.009
	0.24	130600	1.51	1.58	0.008
	0.30	131 800	1.84	1.94	0.007
	0.35	129 400	2.03	2.10	0.004
	0.40	125 800	2.13	2.14	0.000
	0.68	184 000	0.75	1.11	-0.032
	0.70	185 600	0.48	0.72	-0.035
	0.75	174 000	0.04	0.06	-0.034
	0.80	159 300	0.00	0.00	- 0.029
150 000	0.00		0.10	0.10	
	0.10	154900	0.76	0.79	0.010
	0.20	156 500	1.23	1.28	0.009
	0.24	156 200	1.38	1.44	0.007
	0.30	159 200	1.74	1.85	0.008
	0.35	154 200	1.96	2.01	0.003
	0.40	149 500	2.10	2.09	0.000
	0.68	224 300	0.80	1.20	-0.033
	0.70	211 000	0.73	1.02	-0.030
	0.75	214 300	0.20	0.29	-0.037
	0.80	185 000	0.00	0.00	-0.024

"Uncertainties on M_3^* and A_2^* are about 4-5%

^b Mean deviation of $\vec{\lambda}$ values is ± 0.007

^cFrom steric exclusion chromatography measurements⁶

Table 3 Variations with polymer concentration (v_3) and with solvent mixture composition (v_1) of refractive index increments for DOD/MEK/PDMS system at several mixture compositions at 20.0°C

ϕ_{10}	ν ₁	$v_3^a \pmod{g^{-1}}$	
0.00	0.0356	0.0295	
0.10	0.0369	0.0250	
0.20	0.0383	0.0206	
0.30	0.0396	0.0178	
0.40	0.0410	0.0140	
0.50	0.0423	0.0100	
0.55	0.0430	0.0085	
0.60	0.0437	0.0030	
0.70	0.0451	0.0015	
0.80	0.0464	-0.0065	
0.85	0.0471	-0.0084	
0.90	0.0478	-0.0100	
0.95	0.0484	-0.0128	
1.00	0.0491	- 0.01 50	

^a Mean deviation of v_3 values is ± 0.0002

 $M_{13}^{i}(\phi_{10}^{i}) = 0$. Recalling the definition of M_{13} given by (4) and for those systems obeying Pouchlý's approach (3), the following equality holds at ϕ_{10}^{i} :

$$0 = (s - 1 + g_{13}^{\circ} - sg_{23}^{\circ}) + (1 - a_g)$$

$$\times \left(g_{12}(\phi_{10}^{i})(\phi_{10}^{i} - \phi_{20}^{i}) - \frac{\mathrm{d}g_{12}(\phi_{10}^{i})}{\mathrm{d}\phi_{10}}\phi_{10}^{i}\phi_{20}^{i}\right) \qquad (10)$$

On the other hand, the application of the condition for a maximum of the total sorption term, at ϕ_{10}^i , yields, for the system obeying Pouchlý's second approach (equation (5)):

$$\frac{\mathrm{d}M_{33}(\phi_{10}^{i})}{\mathrm{d}\phi_{10}} = \frac{1}{2}(1-s) - \chi_{13}^{\circ} + s\chi_{23}^{\circ} + (1-2a_{\chi}) \times \left(\phi_{10}^{i}\phi_{20}^{i}\frac{\mathrm{d}g_{12}(\phi_{10}^{i})}{\mathrm{d}\phi_{10}} + (\phi_{20}^{i} - \phi_{10}^{i})g_{12}(\phi_{10}^{i})\right) = 0$$
(11)

From the above expression, the following equation yields

Table 4 Variations with polymer concentration (v_3) and with solvent mixture composition (v_1) of refractive index increments for HED/MEK/PDMS system at several mixture compositions at 20.0°C

ϕ_{10}	v ₁	v_3^{a} (ml g ⁻¹)
0.00	0.0354	0.0295
0.10	0.0392	0.0240
0.20	0.0429	0.0170
0.30	0.0467	0.0130
0.40	0.0505	0.0080
0.60	0.0580	- 0.0020
0.65	0.0599	-0.0080
0.70	0.0618	-0.0100
0.75	0.0637	-0.0120
0.80	0.0656	-0.0145
0.90	0.0694	
1.00	0.0732	

^a Mean deviation of v_3 values is ± 0.0002

the value of a_{χ} in terms of χ_{ij}° binary interaction parameters and the composition at the inversion point:

$$(1-2a_{\chi}) = \frac{\frac{1}{2}(s-1) + \chi_{13}^{\circ} - s\chi_{23}^{\circ}}{\phi_{10}^{i}\phi_{20}^{i}dg_{12}(\phi_{10}^{i})/d\phi_{10} + (\phi_{20}^{i} - \phi_{10}^{i})g_{12}(\phi_{10}^{i})}$$
(12)

Once a_{χ} is known, its substitution in equations (8) or (9) allows us to evaluate A_2 in terms of λ values through:

$$A_{2} = \frac{\bar{v}_{3}^{2}}{2V_{1}} \left(\phi_{10} + s\phi_{20} - 2\chi_{13}^{\circ}\phi_{10} - 2s\chi_{23}^{\circ}\phi_{20} + 2(1 - 2a_{\chi})g_{12}\phi_{10}\phi_{20} - \gamma\frac{\lambda^{2}N_{11}}{\bar{v}_{3}^{2}} \right)$$
(13)

Application of equation (13) to predict A_2 values from measured λ values thus demands, besides binary interaction parameters, a known a_{χ} value, which can of course be evaluated from equation (12), once the inversion point is determined from λ measurements. It is this previous knowledge of the inversion point that prevents the inverse application of equation (13) to predict λ values from experimental A_2 values, since, if no measurements on λ have been realized, neither the inversion point nor a_{χ} are known. An alternative way, however, as shown later, will allow that inverse application.

Application of equation (13) to NON, DEC, UND, DOD and HED systems, over the whole composition range of solvent mixtures, is illustrated in *Figure 2*, where A_2 values, as deduced from equation (13), are compared to experimental ones. All the functions and parameters necessary for application of equation (13) are gathered in *Table 5*. With respect to the $\lambda(\phi_{10})$ function, no clear dependence of λ on molecular weight in all these studied systems was experimentally observed⁶⁻⁹, at least over the measured range of molecular weights. Because of that, in A_2 evaluation through equation (13), single smooth λ curves through the diverse experimental data have been used, as Munk *et al.*^{4,5} and Pouchlý *et al.*² have done before. Here χ_{13}° and χ_{23}° were those for a PDMS sample

Figure 1 Linearized plot of equation (9): (\bigcirc) when $\gamma = 0$ and (\bigcirc) when $\gamma = 1$, for DOD and HED systems

Sorption coefficients in polymer cosolvent systems: B. Celda et al.

Figure 2 Variations with system composition of second virial coefficients (A_2) tor a PDMS sample ($M_3 = 150\,000$) at 20.0°C for NON, DEC, UND, DOD and HED systems: (\bigcirc), experimental values; (\longrightarrow), smoothed curve to match experimental points; (\cdots), calculated through FH formalism; (--), calculated from equation (13) when $\gamma = 0$; ($-\cdot -\cdot$), calculated from equation (13) when $\gamma = 1$

Table 5 Parameter values needed for A_2 and λ evaluation, from equations (13) and (15), respectively

System	$g_{12}(\phi_{10})^{a-c}$	χ°a	X [°] 23 ^d	10		(1-2 <i>a</i> _{\lambda})	
				$\frac{\varphi}{From \ \lambda = 0}$	From A_2^{\max}	From $\lambda = 0$ through (13)	From A_2^{\max} through (15)
NON	$1.229 \pm 0.446\phi_{1,0} = 0.666\phi_{1,0}^2 \pm 1.114\phi_{1,0}^3a^4$	0.431 ^d	0.499	0.73	0.70	0.133	0.128
DEC	$1.240 - 0.496\phi_{10} + 4.652\phi_{10}^2 - 8.448\phi_{10}^3 + 5.554\phi_{10}^4$	0.450 ^d	0.499	0.67	0.65	0.134	0.149
UND	$1.137 - 0.828\phi_{10} + 1.912\phi_{10}^2$	0.470 ^d	0.499	0.64	0.60	0.200	0.220
DOD	$1.143 - 0.909\phi_{10} + 6.441\phi_{10}^2 - 11.37\phi_{10}^3 + 7.010\phi_{10}^4$	0.471 ^e	0.499	0.59	0.55	0.173	0.158
HED	$1.236 - 2.116\dot{\phi}_{10} + 11.40\dot{\phi}_{10}^2 - 19.07\dot{\phi}_{10}^3 + 11.31\dot{\phi}_{10}^4 c$	0.5870.604 ^f	0.499	0.40	0.40	0.220	0.295

"From ref. 9

^bFrom ref. 8

^c As evaluated from light scattering measurements²⁷⁻³⁰

^dFrom refs. 6 and 7

^e As evaluated from A_2 (ref. 4)

^f From intercept of equation (9), when $\gamma = 1$ and when $\gamma = 0$ respectively. These values are higher than 0.50 because n-hexadecane is a nonsolvent for PDMS

with $M_w = 150\,000$. Of course, λ values for that polymer sample are very close to the smoothed curves.

As Figure 2 shows, predicted A_2 values for all the systems fit the experimental ones fairly well, both when the single liquid approach ($\gamma = 0$) is followed and when preferential sorption effects are accounted for in total sorption ($\gamma = 1$). Also, in Figure 2, A_2 values calculated through the usual FH equation have been depicted. As widely discussed¹⁸⁻²⁶, neglect of the ternary interactions results in large discrepancies between calculated and experimental values.

Regarding the alternative way followed to predict λ values from experimental A_2 values, the application of the

condition of maximum to the second virial coefficient, recalling that at that solvent composition $\lambda = 0$, yields

$$1 - 2a_{\chi} = \frac{1}{2g_{12}(\phi_{10}^{i})\phi_{10}^{i}\phi_{20}^{i}} \left(A_{2}^{i}\frac{2V_{1}}{\bar{v}_{3}^{2}} - (\phi_{10} + s\phi_{20}) + 2\chi_{13}^{\circ}\phi_{10}^{i} + 2s\chi_{23}^{\circ}\phi_{20}^{i}\right)$$
(14)

which allows a_{χ} to be evaluated from the maximum A_2 value, and from binary interaction parameters. Of course once a_{χ} is thus evaluated, equation (13) (with $\gamma = 1$) can now be applied to predict λ from experimental A_2 data,

Figure 3 Variations with system composition of preferential solvation coefficients (λ) at 20.0°C for NON, DEC, UND, DOD and HED systems: (----), smoothed curve to match experimental points; (----), calculated through Read's expression; (----), calculated from equation (15)

explicitly by

$$\lambda = \frac{\bar{v}_3}{N_{11}^{1/2}} \left(-A_2 \frac{2V_1}{\bar{v}_3^2} + (\phi_{10} + s\phi_{20}) - 2\chi_{13}^{\circ}\phi_{10} - 2s\chi_{23}^{\circ}\phi_{10} + 2(1 - 2a_{\chi})g_{12}\phi_{10}\phi_{20} \right)^{1/2}$$
(15)

As in the case of equation (13), all the functions and parameters needed for equation (15) are also collected in *Table 5.* As *Table 5* shows, small deviations appear between both ϕ_{10}^i sets of values. It must be remembered that the first set of ϕ_{10}^i values proceeds from the smooth λ curves through the experimental values obtained for diverse molecular weight samples, whereas the second set proceeds from the depicted A_2 curve through 8–10 experimental values for the $M_3 = 150\,000$ PDMS sample. Those small deviations in the experimental uncertainty are also reflected in both sets of a_{χ} values.

In Figure 3, λ values predicted from experimental A_2 data, as evaluated through (15), are compared to smoothed experimental λ curves, and, as shown, fair agreement between predicted and experimental values is observed in all systems. Also, in Figure 3, λ values calculated through the widely used Read expression¹⁹ have been depicted. Once more, serious discrepancies arise, in all the systems, between these last calculated λ values and the respective experimental values, as also happens in A_2 evaluation from λ data, because of the neglect of ternary interactions.

As a conclusion, in spite of its use being restricted to those systems in which the maximum in A_2 coincides with the inversion point in λ , it seems that the above treatment is one step further in the applicability of FH formalism as generalized by Pouchlý¹ to predict equilibrium properties of ternary systems.

ACKNOWLEDGEMENTS

The authors are indebted to Siliconas Hispania S.A. for the provision of PDMS samples. The financial support of this research by the Comisión Asesora de Investigación Científica y Técnica (CAICYT) (Project 2293/83) is also acknowledged.

REFERENCES

- 1 Pouchlý, J., Zivný, A. and Solc, K. J. J. Polym. Sci. (C) 1968, 23, 245
- 2 Pouchlý, J. and Zivný, A. Makromol. Chem. 1982, 183, 3019
- 3 Pouchlý, J. and Zivný, A. Makromol. Chem. 1983, 184, 2081
- 4 Chu, S. G. and Munk, P. Macromolecules 1978, 11, 879
- Aminabhavi, T. M. and Munk, P. Macromolecules 1979, 12, 607
 Campos, A., Celda, B., Tejero, R. and Figueruelo, J. E. Eur.
- Polym. J. 1984, 20, 447
 Campos, A., Celda, B., Mora, J. and Figueruelo, J. E. Polymer 1984, 25, 1479
- 8 Campos, A., Celda, B., Mora, J. and Figueruelo, J. E. Eur. Polym. J. 1984, 20, 1187
- 9 Celda, B., Campos, A., Tejero, R. and Figueruelo, J. E. Eur. Polym. J. in press
- 10 Cowie, J. M. G. and McCrindle, J. T. Eur. Polym. J. 1972, 8, 1185
- 11 Cowie, J. M. G. and McCrindle, J. T. Eur. Polym. J. 1972, 8, 1325
- 12 Horta, A. and Fernandez-Pierola, I. Macromolecules 1981, 14, 1519
- 13 Van der Berg, J. W. A. and Altena, J. W. Macromolecules 1982, 15, 1447
- 14 Koningsveld, R. and Kleitsjens, L. A. Macromolecules 1971, 4, 637
- 15 Koningsveld, R. and Kleitsjens, L. A. J. Polym. Sci. (A-2) 1968, 6, 325

- 16 Zivný, A. and Pouchlý, J. J. Polym. Sci. (A) 1972, 10, 1476
- 17 Pouchlý, J. and Zivný, A. J. Polym. Sci. (A) 1972, 10, 1481
- 18 Scott, R. L. J. Chem. Phys. 1949, 17, 268
- 19 Read, B. E. Trans. Faraday Soc. 1960, 56, 382
- 20 Dondos, A. and Patterson, D. J. Polym. Sci. (A-2) 1969, 7, 209
- 21 Maldovan, L. and Strazielle, C. Makromol. Chem. 1970, 140, 201
- Chen, S. A. J. Appl. Polym. Sci. 1972, 16, 1601
- 22 23 Chaufer, B., Sebille, A. and Quivoron, C. Eur. Polym. J. 1975, 11, 683
- 24 Deb, P. C., Prasad, J. and Chatterjel, S. R. Makromol. Chem. 1977, 178, 1455
- 25 Dondos, A. and Benoit, H. Makromol. Chem. 1978, 179, 1051
- 26 Horta, H. and Fernandez-Pierola, I. Macromolecules 1981, 14, 1519
- 27 Commou, D. J. and Mackor, E. L. Trans. Faraday Soc. 1964, 60, 1726
- 28 Lewis, H. H., Schmidt, R. L. and Clever, H. L. J. Phys. Chem. 1970, 74, 4377
- 29 Fernandez-Pierola, I. and Horta, A. J. Chim. Phys.-Chim. Biol. 1980, 77, 27
- 30 Masegosa, R. M., Prolongo, M. G., Hernandez-Fuentes, I. and Horta, A. Ber. Bunsenges. Phys. Chem. 1984, 88, 103